74. 搜索二维矩阵
题意:二维数组,有序,遍历外层数据,在使用二分查找。
时间复杂度: O(log(M*N))
空间复杂度: O(1)
# 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
#
#
# 每行中的整数从左到右按升序排列。
# 每行的第一个整数大于前一行的最后一个整数。
#
#
#
#
# 示例 1:
#
#
# 输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
# 输出:true
#
#
# 示例 2:
#
#
# 输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
# 输出:false
#
#
#
#
# 提示:
#
#
# m == matrix.length
# n == matrix[i].length
# 1 <= m, n <= 100
# -10⁴ <= matrix[i][j], target <= 10⁴
#
#
# Related Topics 数组 二分查找 矩阵 👍 762 👎 0
class Solution(object):
def searchMatrix(self, matrix, target):
"""
暴力解法
时间复杂度O(n)
空间复杂度O(n)
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
for i in matrix:
s = set(i)
if target in s:
return True
return False
class Solution(object):
def searchMatrix(self, matrix, target):
"""
常规解法
时间复杂度O(m logn)
空间复杂度O(1)
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
for i in matrix:
start, end = 0, len(i) - 1
if target > i[end]:
continue
while start + 1 < end:
mid = (start + end) // 2
if target == i[mid]:
return True
if target > i[mid]:
start = mid
else:
end = mid
if target == i[start] or target == i[end]:
return True
return False
class Solution(object):
def searchMatrix(self, matrix, target):
"""
优雅解法
时间复杂度O(log(M*N))
空间复杂度O(1)
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
if not matrix:
return False
h, w = len(matrix), len(matrix[0])
start, end = 0, w * h - 1
while start <= end:
mid = (start + end) // 2
i, j = mid // w, mid % w
if matrix[i][j] == target:
return True
if matrix[i][j] < target:
start = mid + 1
else:
end = mid - 1
return False
matrix = [[1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 60]]
target = 40
print(Solution().searchMatrix(matrix, target))