python垃圾回收机制

内存管理

为了探索对象在内存的存储,我们可以求助于Python的内置函数id()。它用于返回对象的身份(identity)。其实,这里所谓的身份,就是该对象的内存地址

在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象

a = 1
b = 1

print(id(a))

为了检验两个引用指向同一个对象,我们可以用is关键字。is用于判断两个引用所指的对象是否相同。由此引出 is 和 == 的区别

同时,由内存地址和链接指向引出 fastdfs的去重功能和文件指纹概念,还能引出linux中的软链接体系

还能扩展出设计模式中的单例模式

同时需要记忆的是,获取一个元素的内存占用量:sys.getsizeof() 单位是字节

引用计数

在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)。

我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

某个对象的引用计数可能减少。比如,可以使用del关键字删除某个引用

from sys import getrefcount

a = [1, 2, 3]
b = a
print(getrefcount(b))

del a
print(getrefcount(b))

循环引用

两个对象可能相互引用,从而构成所谓的引用环(循环引用)

a = []
b = [a]
a.append(b)

垃圾回收

从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收

然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动

分代回收

Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。

Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。